induction

e.g. Prove \displaystyle\sum_{k=1}^n f(k)=F(n) is true for all n>0.
We have to prove that
1. f(1)=F(1)
2. F(n)+f(n+1)=F(n+1) i.e. if formula works for F(n), it also works for F(n+1).

Prove that for n>0, \quad\displaystyle 1\cdot2+2\cdot3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
Solution. f(1)=1\cdot2=\frac{1\cdot2\cdot3}{3}=F(1)

    \begin{align*} F(n+1)-F(n)&=\frac{(n+1)(n+2)(n+3)}{3}-\frac{n(n+1)(n+2)}{3} \\ &=(n+1)(n+2) \\ &=f(n+1) \end{align*}