
SQUARING THE PLANE USING ARITHMETIC SEQUENCE GRIDS

ADAM PONTING

1. Introduction

Trying to extend some of the Ponting square packings [1, 3] into a plane tiling, the ones I
tried ‘almost’ work, but don’t fit together along a single radial seam. I found related grids
that do tile the plane - the first being the ‘double rainbow’ tiling (Figure 1) - and recently
have been studying this type of tiling, made from grids filled with arithmetic sequences of
integers. (For instructions on constructing grids, see [2].)

Does every grid tile the plane? What determines whether they do or not? Are there an
infinite number of different tilings? Why do the 0-sized squares on the grid always appear
in a straight line in the tiling? Which, if any, of the Ponting packings, when extended, tile
the plane?

Figure 1. The centre of the ‘double rainbow’ tiling
1 − 1

0

∣∣∣∣ −1

Date: June 2017.
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2 ADAM PONTING

2. Grids

2.1. Terms. An h-line, where a + b = c + d :
a b

c d

Mostly I’ll work with an hv-line, a combined h-line/v-line :
a b

c d

∣∣∣∣ ef (Figure 2)

where a + b = c + d and b + d = e + f . The c and f will usually be left off, as the four
numbers a, b, d and e are enough to completely specify a grid/tiling. That reduced hv-line
can also be used as the name of the grid/tiling.

Figure 2.

4 1
3 2

2 4
3 1

4 1
3 2

2
1

3
2

4

1

An h-line

3

2
4

1

A v-line

3
2

4

1

1

2

An hv-line

A and E. A = a − d and E = e − d, the common differences of the arithmetic sequences,
have the same value in every hv-line in a grid.

Groups. The grid cells fall into 2 groups – those that can be a, d and e in hv-lines, which
I’ll call group 1, and those that are b, c and f , which I’ll call group 2.

2.2. Moving around the grid. Starting with any hv-line
a b

c d

∣∣∣∣ ef , the next hv-line to

the north-west will be
a+A b+E

c+E d+A

∣∣∣∣ e+A

f+E
, which I’ll also write as

[
+A +E +A
+E +A +E

]
. (See

Figure 3)
Moving south-east, the changes are equal and opposite:

[ −A −E −A
−E −A −E

]
Similarly, moving north-east:

[
+E −A +E
−A +E −A

]
and south-west:

[ −E +A −E
+A −E +A

]
.

The effect of these four motions can be summarized with the notation:

+A
↖
a

+E
↖
−A
↗
b

c d

∣∣∣∣
+E
↗
e

f

Movement horizontally or vertically, or to any other hv-line, can be produced by a
combination of these elementary operations, e.g.

Move horizontally 1 hv-line to the right = move SE 1 step + move NE 1 step
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Figure 3. Moving

around the grid.

h/v-line sums. If T is the total sum a + b + c + d of an h-line, the h-line to its right has
sum T − 2A; the h-line below it has sum T − 2E. The same is true of v-lines.

2.3. Effect of gcd(A,E). If G = gcd(A,E) > 1, then all values in group 1 are congruent
mod G, and the values in group 2 are either all congruent to them mod G, or none are.
E.g.

2 1

3 0

∣∣∣∣ 4

−3

{
A = 2

E = 4
gcd(A,E) = 2

{
group 1 even

group 2 odd

5 1

4 2

∣∣∣∣ 8

−5

{
A = 3

E = 6
gcd(A,E) = 3

{
group 1 ≡ 2 (mod 3)

group 2 ≡ 1 (mod 3)

2.4. Role of A2 + E2. Adding ±(A2 + E2) to one group any number of times moves to
another hv-line on the same grid.

Moving north-east A times arrives at the h-line

[
a + AE b−A2

c−A2 d + AE

]
Moving south-east E times gets to

[
a−AE b− E2

c− E2 d−AE

]
And doing these 2 steps consecutively gets to

[
a b−(A2+E2)

c−(A2+E2) d

]
Similarly, moving north-east E times gets to

[
+E2 −AE +E2

−AE +E2 −AE

]
; then moving north-

west A times gets to

[
+E2+A2 = +E2+A2

= +E2+A2 =

]
.

2.5. Finding other grid cell values. Starting from any group 1 cell (a, d, e in any hv-
line) s, move right x grid cells and up y grid cells to another group 1 cell (x + y must be

even.) This corresponds to moving NE
x + y

2
steps and SE

x− y

2
steps. So the new cell

value is :

sx,y = s +
E(x + y)−A(x− y)

2
= s +

x(E −A) + y(E + A)

2
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For group 2 cells (b, c, f) :

sx,y = s− A(x + y) + E(x− y)

2
= s− x(A + E) + y(A− E)

2

3. Tilings

3.1. Proper grids and tilings. Drawing a tiling from a grid, it wraps around the centre
twice, so that a half-grid fills 360◦, and a whole grid wraps around to 720◦, doubly tiling
the plane. Most grids tile the plane with two-non-matching layers. Occasionally the two
layers match, and a proper plane tiling results. (Figure 4)

Figure 4. A proper tiling 8 73
0

∣∣9 and an improper tiling 8 63
0

∣∣9 .

The two layers of a tiling are superimposed on each other perfectly when there is a centre
of 180◦ (C2) rotational antisymmetry in the grid, i.e. each square rotates onto another of
equal size and opposite sign. Then each half of the grid expands to fill the plane precisely,
fitting perfectly along the seam. I’ll call these proper grids.

3.2. Centres of rotation and mirrors. The centre of rotation in a proper grid may be
in the centre of a grid square or at a grid vertex; rotation around the midpoint of a side
isn’t possible. Rotational antisymmetry around these two locations is produced around the
grid centre by the two kinds of mirror : 0-mirrors (antisymmetry around a grid 0-square
centre) and quad-mirrors (antisymmetry around a grid vertex).

3.3. 0-mirrors. These have at their centre a hv-line of the form
A E−A

2

0

∣∣∣∣ E .

E −A must be even so that E−A
2 is an integer. Then c and f are equal and opposite, e.g.

in 3 1
4 0

∣∣ 5
−4 , the 4 and −4 squares are not only the same size, but appear in exactly the same

place in the tiling. (Figure 5)
If A = ±E then 0-mirror tilings have D1 symmetry. If A = −E, as in the original

’double rainbow’ 1 −1
0

∣∣−1 , there’s mirror symmetry across y = −x. If A = E, the axis
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of symmetry is y = x. Otherwise, the 0-mirror tilings have no exact symmetry at all,
although from a distance they look perfectly symmetrical.

Figure 5. A 0-mirror: the centre of the grid for 3 1
0

∣∣5 , and its tiling.

3.4. Quad-mirrors. A grid with a quad-mirror has a 2 × 2 block of ±E
2 cells at its

centre. The grid has 90◦ rotational (C4) antisymmetry. The tiling has 180◦ rotational
(C2) antisymmetry, and a central hv-line with the form :

H+A H−A
H

∣∣∣∣ 3H

where H = E
2 . (So E must be even.)

E.g. At the centre of the grid for 5 −1
2

∣∣6 (A = 3, E = 4) is the block 2 2
−2 −2 , which

corresponds to the two adjacent 2-squares in the centre of the tiling. (Figure 6)

3.5. If E−A is odd. Then evidently
A E−A

2

0

∣∣∣∣ E can’t have integer values and a 0-mirror

isn’t possible. To make a proper tiling from that ‘faulty 0-mirror’, either:

a. Multiply all numbers by 2, e.g. multiply
4 1

2

0

∣∣∣∣ 5
by 2 to get the 0-mirror

8 1

9 0

∣∣∣∣ 10

−9
.

(Figure 7), or

b. Add ±A2 + E2

2
to group 2 (b will be

E −A± (A2 + E2)

2
) to get all integers and a

proper tiling1, because a quad-mirror is produced.

1When E −A is odd, A2 + E2 is also odd.
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Figure 6. A quad-mirror : 5 −1
2

∣∣6 .

Figure 7. A 0-mirror : 8 1
0

∣∣10
Conjecture 1. If E − A is odd, the grid produced by

A E−A+A2+E2

2

0

∣∣∣∣ E makes a quad-

mirror tiling. If E is even, the grid is rotated 90◦ so that {A,E} → {E,−A}. The quad-

mirror is located on the grid at the midpoint of the 0s in the hv-lines
A E−A+A2+E2

2

0

∣∣∣∣ E
and

A E−A−(A2+E2)
2

0

∣∣∣∣ E .
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3.6. Effect of
A2 + E2

2
. Adding ±A2 + E2

2
to a group, when A2 + E2 is even :

1. 0-mirror grid: the grid is rotated 90◦, and one of the groups is × − 1. The tiling is
rotated 180◦.

2. quad-mirror grid: move halfway to the ±(A2 + E2) hv-line on the same grid.

On quad-mirror grids, E is even. If A2+E2

2 is an integer, A must also be even. So the
grid numbers are either all odd or all even.

3.7. Semi-antisymmetric flip transformations.1

1. Swap values. Reverse hv-line values – swap a and e, c and f – and multiply one group

by −1. i.e.
e −b
−f d

∣∣∣∣ a−c produces the same tiling as
a b

c d

∣∣∣∣ ef , only flipped over.

2. Swap lines. Swap all h-lines with v-lines (i.e. every hv-line becomes a vh-line, and vice
versa) and multiply one group by −1.

4. Moving around the tiling

4.1. Group 1. I’ll measure distances from d in the general hv-line

+A
↖
a

+E
↖
−A
↗
b

c d

∣∣∣∣
+E
↗
e

f
Define the

location of each square as its bottom left corner. Starting from square d0, call its bottom
left corner (x0, y0). (Figure 8.)

Figure 8.

1“Semi-antisymmetric” because just one of the groups are multiplied by −1.
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1. Moving NW. In the first hv-line to the NW,
[
+A +E +A
+E +A +E

]
, d1 (i.e. a0) is at :

x1 = x0 − c0 y1 = y0 + d0

The second step NW moves to
[
+2A +2E +2A
+2E +2A +2E

]
, with d2 at :

x2 = x1 − c1 y2 = y1 + d1

= x0 − c0 − (c0 + E) = y0 + d0 + (d0 + A)

The third step NW moves to
[
+3A +3E +3A
+3E +3A +3E

]
, with d3 at :

x3 = x2 − c2 y3 = y2 + d2

= x0 − c0 − (c0 + E)− (c0 + 2E) = y0 + d0 + (d0 + A) + (d0 + 2A)

After n steps NW, we reach
a0 + nA b0 + nE

c0 + nE d0 + nA

∣∣∣∣ e0 + nA

f0 + nE
, with dn at :

xNW
n = x0 − c0 − (c0 + E)− (c0 + 2E) yNW

n = y0 + d0 + (d0 + A) + (d0 + 2A)

− · · · − (c0 + (n− 1)E) + · · ·+ (d0 + (n− 1)A)

= x0 − nc0 −
n−1∑
k=1

kE = y0 + nd0 +
n−1∑
k=1

kA

= x0 − nc0 − E
n(n− 1)

2
= y0 + nd0 + A

n(n− 1)

2

= x0 − n
(
c0 + E

n− 1

2

)
= y0 + n

(
d0 + A

n− 1

2

)
(1)

2. Moving SW. The first hv-line to the SW is
[ −E +A −E
+A −E +A

]
. d1 is at :

x1 = x0 − g = x0 − d1 y1 = y0 − h

= x0 − (d0 − E) = y0 − (c0 − E)

since h is c moved SE, i.e. c− E (see Figure 8.)

The second step SW moves to
[ −2E +2A −2E
+2A −2E +2A

]
, with d2 at :

x2 = x1 − d2 y2 = y1 − (c1 − E)

= x0 − (d0 − E)− (d0 − 2E) = y0 − (c0 − E)− (c0 + A− E)

The third step SW moves to
[ −3E +3A −3E
+3A −3E +3A

]
, with d3 at :

x3 = x2 − d3 y3 = y2 − (c2 − E)

= x0 − (d0 − E)− (d0 − 2E) = y0 − (c0 − E)− (c0 + A− E)

− (d0 − 3E) − (c0 + 2A− E)
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So after n steps SW, we reach
a0 − nE b0 + nA

c0 + nA d0 − nE

∣∣∣∣ e0 − nE

f0 + nA
, with dn located at :

xSW
n = x0 − nd0 +

n∑
k=1

kE ySW
n = y0 − n(c0 − E)−

n−1∑
k=1

kA

= x0 − n
(
d0 − E

n + 1

2

)
= y0 − n

(
c0 − E + A

n− 1

2

)
(2)

These formulae also work for n < 0, i.e. moving NE and SE.

4.2. Group 2. Now starting from c0 :

1. Moving NW. In the first hv-line to the NW,
[
+A +E +A
+E +A +E

]
, c1 is at :

x1 = x0 − c1 y1 = y0 + a0→SW

= x0 − (c0 + E) = y0 + a0 − E

where a0→SW is a0 moved 1 step SW : a0 − E.

In the second hv-line to the NW,
[
+2A +2E +2A
+2E +2A +2E

]
, c2 is at :

x2 = x1 − c2 y2 = y1 + a1→SW

= x0 − (c0 + E)− (c0 + 2E) = y0 + a0 − E + a0 + A− E

After n steps NW, cn is at :

xn = x0 − n(c0 + E
n + 1

2
) yn = y0 + n(a0 − E + A

n− 1

2
)

2. Moving SW. In the first hv-line to the SW,
[ −E +A −E
+A −E +A

]
, c1 is at :

x1 = x0 − a1 y1 = y0 − c1

= x0 − (a0 − E) = y0 − (c0 + A)

In the second hv-line to the SW,
[ −2E +2A −2E
+2A −2E +2A

]
, c2 is at :

x2 = x1 − a2 y2 = y1 − c2

= x0 − (a0 − E)− (a0 − 2E) = y0 − (c0 + A)− (c0 + 2A)

After n steps SW, cn is at :

xn = x0 − n(a0 − E
n + 1

2
) yn = y0 − n(c0 + A

n + 1

2
)

4.3. Moving to any other hv-line.
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Group 1. Finding an expression for dnew, located m steps NW and n steps SW :
1. Moving NW m steps from d0 gets to

[
+mA +mE +mA
+mE +mA +mE

]
. From (1), dNW

m is at :

xNW
m = x0 −m

(
c0 + E

m− 1

2

)
yNW
m = y0 + m

(
d0 + A

m− 1

2

)
2. Moving SW n steps from dNW

m gets to
a0 + mA− nE b0 + mE + nA

c0 + mE + nA d0 + mA− nE

∣∣∣∣ e0 + mA− nE

f0 + mE + nA
.

Using (2), with d0 → d0 + mA and c0 → c0 + mE, dnew is at:

x = xNW
m − n

(
d0 + mA− E

n + 1

2

)
= x0 −m

(
c0 + E

m− 1

2

)
− n

(
d0 + mA− E

n + 1

2

)
(3a)

y = yNW
m − n

(
c0 + mE − E + A

n− 1

2

)
= y0 + m

(
d0 + A

m− 1

2

)
− n

(
c0 + E(m− 1) + A

n− 1

2

)
(3b)

4.4. Location of other squares the same size.

Group 1. Moving NW from d0 nE steps, then SW nA steps, dnew is the same size as d0.
(Section 2.4).

From (3), with m→ nE and n→ nA, dnew is at :

x = x0 − nE
(
c0 + E

nE − 1

2

)
− nA

(
d0 + nAE − E

nA + 1

2

)
(4a)

= x0 − nAd0 − nE
(
c0 + E

nE − 1

2
+ A

nA− 1

2

)
y = y0 + nE

(
d0 + A

nE − 1

2

)
− nA

(
c0 + E(nE − 1) + A

nA− 1

2

)
= y0 + nE

(
d0 −A

nE + 1

2

)
− nA

(
c0 − E + A

nA− 1

2

)
(4b)

hv-line =
a0 b0+n(A2+E2)

c0+n(A2+E2) d0

∣∣∣∣ e0
f0+n(A2+E2)

4.5. Location of 0-squares in tilings.

Conjecture 2. All squares of size 0 are collinear in any tiling.

I. From 0-sized d to other 0-sized d squares.
Case 1. d=0 and E=0. A

0

∣∣0 All squares on the central SW-NE diagonal are 0, and

xSW
n = x0−n

(
d0−E n+1

2

)
collapses into xSW

n = x0, i.e. they’re all on the same vertical line.

e.g. −1 1
0

∣∣0 (Figure 10).

Case 2. d=0, A,E 6= 0. A
0

∣∣E
If there’s a 0-sized d in a grid, A b

0

∣∣E , another one will be found at
A b+n(A2+E2)

0

∣∣E .
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When d0 = 0, (4) simplifies to :

x = x0 − nE
(
c0 + E

nE − 1

2

)
− nA

(
nAE − E

nA + 1

2

)
= x0 − nE

(
c0 +

n(A2 + E2)− (A + E)

2

)
(5a)

y = y0 + nE
(
A
nE − 1

2

)
− nA

(
c0 + nE2 − E + A

nA− 1

2

)
= y0 − nA

(
c0 +

n(A2 + E2)− (A + E)

2

)
(5b)

i.e. the slope
y − y0

x− x0

from any other 0-sized square d to d0 is A/E, so they are all on lattice

points on the line y − y0 = A/E(x− x0) and thus collinear.

5. Other tilings

Figure 9: 1 2
1

∣∣1 (A = E = 0) is the tiling with alternating squares of 1 and 2; it doesn’t
‘bend’ around in the way the usual grid does, and tiles the plane once only.

Figure 9. 1 2
1

∣∣1

Figure 10: A quad-mirror hv-line with E = 0, A −A
0

∣∣0 , makes a quad-mirror of zeros,

e.g. −1 1
0

∣∣0 .

6. Further questions

Q. Prove that no proper tiling contains any Ponting square packing. Is there some other
arrangement where a n× n square in the grid contains 1..n?

Q. Give the formula for any grid number (x, y), and tiling square size and location, given
hv-line data.

Q. There are d = 0 squares when, exactly? There are c = 0 squares when, exactly?
Given that there are d = 0 squares, there are c = 0 squares when, exactly?

Q. Expanding the grid. Is there some way if putting more numbers between the existing
grid cells? e.g. a doubled Ponting packing has 2, 4, 6 . . . 2n2. Is there some way of putting
other series in the gaps in between with the odd numbers?
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Figure 10. 1 −1
0

∣∣0 – a quad-mirror of zeros.

Q. Why does 180◦ of grid expand to 360◦ of tiling? Obviously ’double rainbow’ looks
like
√
z because both have the angle-halving/doubling thing, rotational squashing. But

why does that always happen? They’re parabolic. Why? The x and y coordinates always
have a non-linear relationship. Why doubling, not tripling? I guess, because of the 2 in
y = x2. Can tripling grids be made?

So, draw each tiling with each square covering 1/2 the angle from centre, then 720◦ will
fit in 360◦. i.e. draw the square roots of complex coords. That’s equivalent to drawing on
a double-cartesian plane, with 720◦ shown in 360. Two of each axis? Then all grids will
be ’proper’.

Q. Where’s the centre, in tilings without a mirror? What’s the function returning the
coordinates of the centre, given any hv-line of a grid?

Q. What if the edges between the two tiling halves are a straight line? Then they could
have different squares fitting together. And wouldnt need a mirror? But I think a straight
edge only happens when A = E.

Q. Is it sufficient for a proper tiling that the grid has C2 antisymmetry? It seems so.
Try to make a proper tiling that has neither 0-mirror nor quad-mirror.
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